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Abstract 
 
 When a Decision Maker is asked to provide his or her preferences, the response 

represents a snapshot in time.  While their preference structure elicited at any given 

moment represents their revealed preferences at that point in time, it may change over 

time.  These changing preferences over time represent ambiguity in the decision maker’s 

preferences.  Other sources of ambiguity may result from the presence of groups in the 

decision making process. 

 One weakness of many decision analysis techniques today is the inability to 

incorporate this possible ambiguity into the basic decision model.  The existence of the 

problem has been known and commented on for many years.  This research attempts to 

address that problem.  It begins with the basic approach and methodology developed by 

Ralph Keeney, Value-Focused Thinking (VFT).  This methodology is then expanded to 

allow decision makers to specify not just constant weights to demonstrate their 

preferences, but an entire distribution.  These distributions are then incorporated with the 

value of the attributes and the whole is simulated using Monte Carlo Simulation provided 

by Crystal Ball. 

 The result of incorporating these weight distributions into the model, is an 

empirical distribution for the value of an alternative.  The alternative distributions can be 

compared in a number of ways to provide insight to the decision maker. 
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VALUE FOCUSED THINKING IN THE PRESENCE OF WEIGHT 
AMBIGUITY:  A SOLUTION TECHNIQUE USING MONTE CARLO 

SIMULATION 
 
 
 
 

1.  Introduction 
 
 

 Countless decisions are made every day by people all across the world.  Some of 

these decisions are made as a rapid response to immediate events allowing little or no 

time for analysis.  Others are researched at length and made only after exhaustive study 

and debate.  Whether made in the spur of the moment or after years of analysis, these 

decisions encompass a myriad of outcomes and consequences. 

 Throughout history, people have been making decisions.  For almost every 

complex decision made, someone else is trying to help, guide or influence the decision 

and the decision maker.  This aid comes from all areas of life.  Religion, ethics, morality, 

science, politics, force and philosophy are only a few of the schools of thought that have 

attempted to guide the world in its decision making.  While these sources may all provide 

good guidelines, their general rules and guiding principles do not provide insight into 

every decision situation.  The growing complexity of our world has made it necessary to 

address our decision making from a more precise, organized and analytical perspective 

(Kaufman, 1968: 13). 

 In any decision, the Decision Maker (DM) must choose between at least two 

alternatives.  For most of human history, the decisions facing mankind have been made 
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largely through intuition (Kaufman, 1968: 12).  Decision Analysis (DA) seeks to aid the 

DM through structuring the decision problem clearly and choosing among competing 

alternatives (Howard, 1968b: 581-582).  

 
 
1.1  Background 
 

 Even among the more analytical approaches to decision making, there are many 

possible techniques.  Social and cognitive psychology offer an entire body of knowledge 

to the science of human decision making.  Psychological research into social and 

cognitive processes may involve analyzing the specific mechanics used by the human 

brain in making a decision or what aspects of a person’s life is most influential in shaping 

their decisions.  Economics also provides techniques for making decisions involving 

fiscal or monetary situations.  Operations research (OR) is another science involved in the 

pursuit of better decision making (Howard and Matheson, 1968: 21-26).  Compared to 

psychology and economics, OR is a relatively new discipline which brings its own suite 

of tools and techniques to address decision making.  Mathematical programming has 

been used to aid decision making involving optimizing some value in the face of 

constraints.  Game theory addresses decisions made against direct opposition from some 

other person(s) or situation(s).  Decision analysis seeks to provide insight into a decision 

based on the information available about the situation, the potential alternatives and the 

preferences and attitudes of the decision maker (Bunn, 1984: 1-8; Clemen, 1999: 5-8).  

Decision Analysis provides the larger canvas for the research in this thesis. 
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 Decision analysis is concerned with identifying the logical and reasonable 

conclusions based on the problem structure, the alternatives, and decision maker 

preferences (Howard, 1983: 7).  Decision analysis seeks to assist in making some 

impending decision. Through interaction with the appropriate decision makers, analysts 

and subject matter experts, DA attempts to accurately structure that decision and identify 

the relevant pieces. 

 Decision analysis has been applied to a number of decision problems in public 

policy, corporate decision making and personal choices (Keeney and McDaniels, 1999: 

651; Keeney, 1992: 342, 372).  The methods used to analyze decision situations in all 

areas come in many forms and focus on different aspects of the situation.  The method 

employed and the factors under consideration are a direct result of the decision situation 

itself.  Some methods address decision making with a single objective (maximizing 

expected profit for example) (Clemen, 1996: 19-21), while others concentrate on 

structuring problems where many diverse and often conflicting objectives are present 

(Keeney and McDaniels, 1999: 655).  Decision analysis models can address problems 

with sequential decisions or when only a single decision needs to be made.  These 

problems can include deterministic frameworks where all relevant parameters are 

assumed to be known (Keeney and McDaniels, 1999: 656-8) or can incorporate a number 

of uncertain events and variability in the outcomes.  Finally, the goal of decision analysis 

is to provide insight into the decision being made and to provide some measure of or 

insight into the ranking of the competing alternatives.   

 Value-Focused Thinking (VFT) is one methodology designed to achieve the goal 

of providing insight to the decision maker.  VFT was formalized by Ralph Keeney in his 
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1992 book Value-Focused Thinking: A Path to Creative Decisionmaking (Keeney, 1992) 

with the idea that values should be emphasized over alternatives.  This approach seeks to 

identify the inherent values of the decision maker and the underlying structure of the 

decision to choose between competing alternatives or to even help identify new ones.  

Quantifying the relative importance of the various and often competing objectives in a 

VFT problem may be non-trivial.  This relative importance is modeled in VFT as weights 

on the various attributes.  The essence of these weights is in “value tradeoffs” (Keeney 

and Raiffa, 1976: 66).  The decision maker must decide how much of attribute A he or 

she is willing to give up to get a certain increase in attribute B.  These weights come 

directly from the decision maker and can be elicited in a number of ways.  The methods 

for developing weights can impact their final values (Bottomley and Doyle, 2001 and 

Poyhonen and Hamalainen, 2001).  Just as the elicitation varies, so do the exact 

interpretation of these weights (Choo, Schoner and Wedley, 1999).  Despite the varied 

approaches to weight elicitation and the many interpretations of the weights themselves, 

none of these methods are designed to account for ambiguity.  They all conform to the 

fundamental assumption that the weights can be determined absolutely and do not 

change. 

 VFT and many other decision analysis methodologies do, however, provide for 

the possibility that there may be some uncertainty in the performance of the alternatives 

on the measurement criteria.  One source of uncertainty in alternative performance is a 

lack of information.  The DM may not have all of the needed details to evaluate the 

performance of an alternative.  A second source of uncertainty comes from evaluating a 

previously untried alternative whose performance can only be estimated ahead of time.  
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Regardless of the source, the presence of this ambiguity is a widely accepted 

circumstance (Clemen, 1996; Beauregard, 2001).  Chapter 2 discusses how this 

ambiguity can be incorporated into a decision problem structure and eventually used to 

provide insight for the decision maker.  One possible method for addressing this 

ambiguity is through the use of Monte Carlo simulation (Clemen, 1996: 413). 

 In 1964, J. M. Hammersley and D. C. Handscomb wrote Monte Carlo Methods in 

which they stated, “Monte Carlo methods comprise that branch of experimental 

mathematics which is concerned with experiments on random numbers,” (Hammersly 

and Handscomb, 1964: 2).  This is often useful when only a small amount of real data can 

be obtained or the analytical solution is extremely difficult to derive or is intractable.  In 

the DA context, if the ambiguity in some of the model parameters can be described 

through some set of random numbers or an underlying distribution, Monte Carlo methods 

can be used to develop probability distributions of the final value for each alternative 

(Clemen, 1996; Chacko, 1991).          

 

1.2  Problem Statement 

 
 Decision analysis models, in their basic philosophy and structure, often assume a 

single DM (Buchanan, 2001; Howard, 1980: 198).  Another assumption is that the 

weights or preference structure of the decision maker can be determined absolutely and 

without variation (Kassouf, 1965: 8; Lavelle et al., 1997: 769; Shepetukha et al., 

2001:229).  As mentioned in the previous section, VFT assumes that the weights used in 

the model are known and unchanging.  In many situations, this assumption may not be 
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valid.  The potential for a violation of this assumption is well known giving rise to the 

idea of sensitivity analysis (Winston, 1994).  That is, analyzing the model to see if it is 

robust to changes in a given parameter.  This is often a post hoc process accomplished 

after the primary analysis and not affecting the underlying structure of the decision (Felli 

and Hazen, 1999: 79).  However, if the preference weighting is known to be ambiguous, 

it may be more accurately represented as a distribution and incorporated into the basic 

model as such.  Chapter 2 explores, in more detail, when this situation might occur. 

 Furthermore, a disconnect has developed between the underlying theory of VFT 

and its actual application.  VFT is often used to address problems faced by groups 

(Keeney and McDaniels, 1999).  Unless a consensus in preferences is reached with 

certainty, some variability underlies the weighting.  Even when dealing with a single 

decision maker, ambiguity concerning the DM’s preference structure may exist 

(Moshkovich et al., 2002).  A DM’s preferences may change over time, inducing 

variability into a decision structure meant to be robust against the timing of the decision 

(Fishburn, 1964: 20-21).  An ambiguous preference structure may also be created through 

the existence of uncertainty or variability.  Further, a decision maker may not have a 

complete understanding of his or her own preference (Fishburn 1964: 20-21, 84).  This 

ambiguity on the part of the DM may adversely affect the outcome of the model if 

certainty is incorrectly  assumed.  A methodology designed to incorporate this ambiguity, 

regardless of the source, will allow greater flexibility in the possible structure of decision 

problems.    
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1.3  Research Direction 
 
 
 The research in this thesis demonstrates a process for incorporating weight 

ambiguity into VFT models.  Through the use of Monte Carlo simulation, ambiguity can 

be modeled and the resulting decision problem analyzed empirically.  A review of the 

current literature and practices provides the framework for the issues involved and 

establishes the premise for the need for this new technique. 

 
 
1.3.1  Objectives.     
 

 Having identified a potential need for including weight ambiguity into the 

structure of a DA problem, this research has two objectives: develop a solution 

methodology and provide concrete examples of this methodology.  First, this research 

develops and describes a methodology for incorporating weight ambiguity into the VFT 

framework.  This methodology includes the use of Monte Carlo simulation to construct 

an empirical distribution of values for each alternative.  These distributions can then be 

evaluated to determine the preferred alternative.  Second, this methodology will be 

demonstrated through the use of two concrete examples.  The first example is from a 

1997 study attempting to develop an analytical solution to a problem of weight ambiguity 

(Lavelle et al., 1997).  The second example will come from the Information Assurance 

decision problem found in Lt Beauregard’s thesis (Beauregard, 2001).   
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1.3.2  Approach 
 

 This study relies heavily on a literature search of decision analysis and decision 

making under ambiguity.  Synthesizing this literature provides a map through the last half 

century of the discipline.  During this time, the importance, use and elicitation of weights 

has gone through many phases.  At times they have been thought of as merely “scaling 

constants” used to try to equate fundamentally different aspects of a decision problem; 

for example, how does a DM equate an increase of one mile per gallon of gas mileage to 

increasing a vehicle color from his or her second favorite to most favorite (Keeney, 

1992).  At other times, weights have very specifically been labeled as the decision 

maker’s specific relative preference among the competing objectives (Beroggi 1999).   

 Once the literature search has firmly established both a need and a possible 

avenue to fulfill this need, the methodology being proposed is described.  The 

methodology presented in this thesis mirrors VFT up to the elicitation of weights.  At this 

point, the discussion departs into Monte Carlo simulation.  This approach also 

necessitates a new method for evaluating which alternative is “best.”  While a number of 

possible techniques for comparing alternatives are presented, it is not the focus of this 

research to determine which of these, or some other technique not described, is of most 

use to the decision maker.  The previously mentioned examples (Lavelle and Beauregard) 

have been chosen to demonstrate two things.  The first example (described in detail in 

Chapter 2) compares analytical and simulation results for a given problem structure to 

establish the methodology presented as a valid and applicable approach to dealing with 
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the existence of weight ambiguity in a VFT framework.  The second example (also 

described in Chapter 2) demonstrates the applicability and use of the methodology on a 

more complex decision hierarchy. 

 
 
1.3.3  Scope and Assumptions 
 

 This research is not without its own assumptions and limitations.  The literature 

search encompasses a lengthy discussion on the interpretation and elicitation of weights.  

The research does not, however advocate any given interpretation or go into any 

discussion of their relative merits.  For more in depth comparisons and discussions of 

elicitation techniques, the 1999 study by Choo, Schoner and Wedley provides a survey of 

techniques that have been used (Choo et al., 1999).  It is not the intention of the author, or 

the point of this research, to enter into the debate on preferred interpretations or 

elicitation methods. 

 Similarly, this thesis does not discuss or evaluate the methods for eliciting 

subjective probabilities from a decision maker.  Other researches have explored this area 

and developed a number of techniques and approaches (Benson et al., 1995; Kahn and 

Meyer, 1991).  This research assumes that these approaches are appropriate and sufficient 

to address the issues of weight ambiguity as used here. 

 Finally, this thesis is concerned with the VFT hierarchical structure and adapting 

that structure to accommodate a new dimension of ambiguity.  This method uses the 

weighted, additive value model and its underlying assumptions.  It does not include any 

process or guidelines for any other aggregation rules.  While the basic approach 
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developed here may be appropriate for other multi-attribute decision analysis 

methodologies or systems, the author makes no claims to applicability outside of VFT.  

Expanding this approach beyond VFT, is an issue for future research. 

 
 
1.4  Research Contribution 
 
 
 The techniques presented in this thesis represent a basic adaptation of a familiar 

method for analyzing multi-attribute decision problems.  Through an expansion of weight 

elicitation methods already in practice, weight distributions can be assessed from the 

decision maker to correspond with the problem attributes.  The presence of these 

distributions increases the complexity of the commonly used multi-attribute value 

function presented later in Chapter 2.  While both a framework and an analytical solution 

technique (Lavelle et al., 1997: 769) have been previously used to resolve very simple 

decision structures, it has limited application to more complex decision structures.  

Simulation can overcome these limitations in the analytical approach. 

 The key contributions of this research come from its expanded framework that 

allows for ambiguity in the weights and its development of a Monte Carlo Simulation 

approach to appropriately evaluate and analyze the value of alternatives in the presence 

of this ambiguity 

 
 
1.5  Thesis Overview 
 
 
 This thesis explores the case in which the weights of a multi-criteria decision 

problem cannot absolutely be determined.  Because of this ambiguity, at least some of 
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these weights must be specified by a range or distribution.  The research uses Value-

Focused Thinking to structure the decision, and employs Monte Carlo simulation to 

develop empirical distributions for the value of the alternatives.   

 Chapter 1 presented the background and framework to explain the question at 

hand.  It also answers the research specific questions of objectives and assumptions.  

Chapter 2 expands this background into a literature search.  Chapter 2 addresses utility 

theory and value preferences, the use of weights, properties of decision makers, 

ambiguity, alternative selection, Monte Carlo simulation and an overview of two specific 

decision examples that will be used later in the thesis.  The methodology presented in 

Chapter 3 creates a simulation model for incorporating weight ambiguity in a VFT 

problem.  The exact methodology used, and the resulting simulation, depends on which 

of the three separate weighting techniques presented is employed.  Examples are 

presented in Chapter 4.  Chapter 5 ends the thesis with summaries of the issues, the 

proposed technique and the examples.  It also discusses some of the limitations of the 

research and ends with the final conclusions. 
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2.  Literature Review 

 
 

 This chapter provides a review of the literature that is key to establishing the 

framework that is the basis for this research.  This framework begins with a look at the 

broad issues and problems addressed by decision analysis.  This broad overview is then 

narrowed to discuss utility theory, value theory and Value-Focused Thinking (VFT) 

specifically.  After reviewing these theories and techniques, the chapter specifically 

addresses preferences and value tradeoffs a decision maker must identify.  Decision 

making in the presence of ambiguity is addressed when these preferences and other 

model parameters are not exactly known.  From this point, the focus shifts to Monte 

Carlo techniques and the use of simulation in solving problems that involve probability or 

uncertainly.  The chapter ends with a discussion of possible formats used to provide 

decision makers with insight into the alternatives when ambiguity exists.  

 Throughout this chapter, several terms are used repeatedly.  Some of these terms 

are used interchangeably, others are often thought to be interchangeable, but in truth have 

different meanings.  The first set of definitions to look at involve: attribute, objective and 

criterion.  These words are often used interchangeably in Decision Analysis literature 

(Canada and Sullivan, 1989: 211).  However, while similar, their individual meanings are 

distinctly different.  An attribute is some aspect of a decision that is important to a 

decision maker.  If purchasing a vehicle, cost may be an important characteristic to 

consider.  Cost is an attribute in the decision to purchase a vehicle.  Objective represents 

direction of improvement or preference of the attributes (Canada and Sullivan, 1989: 
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211).  In the vehicle purchase example, a low cost is the objective.  A criterion is a 

standard or rule that guides decision making (Canada and Sullivan, 1989: 211).  A 

criterion relates how much more attractive an option gets as the “level” of an attribute 

moves in the direction of the objective.  How much better is a car with a cost of $10,000 

compared to one with a cost of $15,000?  This thesis does not use criterion or objective 

interchangeably with attribute, but rather according to their definitions just given.  Other 

terms with possibly multiple interpretations are also used throughout this thesis.  Value 

and utility have been mentioned and are addressed specifically in this chapter.  As a 

central theme of this research, ambiguity, uncertainty and variability are presented and 

discussed.  These final terms are specifically defined as they appear throughout this 

chapter. 

 To better explain many of the ideas in this chapter, a simple example can often 

illustrate a given concept.  The notional vehicle example seen in the preceding paragraph 

is used in these cases.  To provide consistency and context, the decision problem is the 

purchase of a new vehicle, with important attributes being cost, functionality and 

aesthetic value.  The competing objectives are low cost, high functionality and high 

aesthetic value.   

 
 
2.1  Decision Analysis 
 
 
 In 1968, Ron Howard stated, “Decision analysis has emerged from theory to 

practice to form a discipline for balancing the many factors that bear upon a decision,” 

(1968b: 1).  Now, over 35 years later, the practice and application of decision analysis 
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has grown tremendously (Raiffa, 2002).  Decision analysis comprises more than just 

theory and application, but an entire philosophy and world view (Howard, 1968b: 1; 

Howard, 1980; Raiffa, 2002).   

 The decision makers faced with these problems must make value judgments, for 

without value judgments, there can be no decision (Howard, 1968a; Keeney, 2002).  

Value judgments are necessary to identify appropriate value trade-offs (Keeney, 2002: 

936).  In this respect, a good value trade-off is one that accurately represents a decision 

maker’s values concerning a decision.  These value trade-offs, and the underlying value 

judgments, drive the decision process as the true basis for comparing alternatives 

(Keeney and Raiffa, 1976: 66-69).  Alternatives are ultimately the cause for a decision in 

the first place.  Without at least two alternatives, the course of action is simple, and no 

real decision is required; one simply follows the course of action available.  Competing 

alternatives most often involve more than one attribute.  The decision maker’s objectives 

for these attributes are often in conflict (Watson and Buede, 1987: 19).  That is, to 

increase the desirability of an alternative in one attribute will often require lowering the 

desirability in another.  This situation is most clearly seen when discussing the cost of an 

item.  Generally, higher quality and functionality and lower cost are competing 

objectives.  It is the competing nature of objectives that often makes it difficult to choose 

among alternatives. 

 Decision analysis separates a decision into its component pieces to better provide 

for a rational decision.  A rational decision is one that is logically consistent.  A rational 

decision maker is one whose decisions flow logically from a set of given values and 

preferences (Howard, 1980: 181-182; Kassouf, 1970: 1-8).  Decision analysis is, by 
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nature, a normative process, that is it seeks to dictate how decisions should be made 

rather than describing how they are being made (Howard, 1980: 181; Kassouf, 1970: 1-

4).  One question then becomes, why do we need to tell a decision maker what should be 

done if he or she makes rational decisions?  Unfortunately, most decision makers are not 

rational when presented with new problems (Howard, 1980: 181).  It is the ability of 

decision analysis to assume rationality and then express how a decision should be made 

(to maintain that rationality) which is its true “power” (Howard, 1980: 181).  By 

following the actions prescribed through decision analysis, it is possible to improve on 

our natural decision making abilities and make better decisions (Howard, 1980: 181-186; 

Kassouf, 1970: 1-4).       

 

2.1.1  Utility 
 

 One very common normative approach to decision analysis is utility theory.  

Watson and Buede provide a basic definition of utility theory as: 

The concept of a numerical measure to describe the value of alternative 
choices has come to be referred to as utility theory, with the utility function 
being the numerical measure itself.  (1987: 21) 

 
“Alternative choices” broadly refers to any possible outcomes or consequences resulting 

from some decision.  For any two possible outcomes (x1 and x2), a number [u(x1) and 

u(x2)] can be assigned to each outcome such that x1 is preferred over x2 if and only if u(x1) 

is greater u(x2): 

( ) ( )1 2 1 2x x u x u x⇔ >f  
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where f  means “is preferred to” and the numbers assigned [u(x1) and u(x2)] represent the 

utility of x1 and x2 respectively (Fishburn, 1970: 9).   

 What the definition at the beginning of the preceding paragraph does not explain 

is that utility theory is concerned with the uncertainty in a decision problem.  More 

specifically, it addresses the uncertainty associated with the possible outcomes of a 

decision.  In the impending vehicle purchase, the exact cost of any given alternative may 

not be known exactly.  The cost may fluctuate based on the day of purchase, the sales 

person available or the negotiating skills of the decision maker.  The outcome is 

uncertain.  It is very important at this point to emphasize this use of uncertainty.  Utility 

theory addresses the decision maker’s reaction to uncertainty in outcomes, not 

preferences (Kahn and Meyer, 1991).  The decision maker’s reactions, or attitudes, 

towards uncertainty in outcomes are characterized by his or her risk preference, that is, 

whether he or she is risk seeking, risk averse or risk neutral (Watson and Buede, 1987: 

21; Kassouf, 1970: 36). 

 The decision maker’s risk preference can be described through the use of a utility 

function (Watson and Buede, 1987: 21).  The relationship between preference and the 

utility function is similar to the utility/preference relationship described at the beginning 

of this section.  There exists a real valued function, ( )u , such that for every possible 

outcome, x, in X : 

    ( ) ( )1 2 1 2x x u x u x⇒ >f .  (Fishburn, 1970: 9) 

The real valued function, ( )u , is the utility function for the set, X, of possible outcomes.  

To assess the utility function, the decision maker is asked a series of questions about his 
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or her preference regarding the uncertain outcomes.  The decision maker states his or her 

preference between a certain outcome and the uncertain outcome of a lottery.  These 

lotteries are often in terms of monetary value (Keeney and Raiffa, 1976: 143).  The 

decision maker can choose a certain amount of money $y or can choose the lottery with a 

probability, p, of receiving $s and a probability, (1 – p), of receiving $w.  When the 

decision maker is indifferent between the certain outcome and the lottery, $y represents 

the certainty equivalent (Fishburn, 1970: 117; Howard, 1968b: 584).  The utility function 

can be identified through assessing the certainty equivalent at several points within the 

set of possible outcomes (Keeney and Raiffa, 1976: 204-206).   Any of the parameters 

($y, $s, $w and p) involved in the determination of a certainty equivalent can be varied to 

identify the point of indifference.  Which parameters to vary, the exact structure of the 

lottery and the way in which the questions are posed to the decision maker are all 

dependent on the decision maker, analyst, and the current decision situation (Bunn, 1984: 

32-33; Clemen, 1996: 469-480; Fishburn, 1970: 117-119; Keeney and Raiffa, 1976: 142-

208).  The expected value of this utility function is known as the expected utility of the 

possible outcomes.   

 In 1738, Daniel Bernoulli wrote, “…the value of an item must not be based on its 

price, but rather on the utility it yields.  …the utility…is dependent on the particular 

circumstances of the person making the estimate,” (Bernoulli, 1954: 24).  He was writing 

about how to reconcile the apparent inconsistency in how people value money (Watson 

and Buede, 1987: 19-21).  Utility has since been used to help describe economic behavior 

and ethics.  Keeney and Raiffa declared that von Neumann and Morgenstern created the 

axioms and foundations for the utility theory used widely in decision analysis (Keeney 
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and Raiffa, 1976: 131, 283).  Since then, others have built on their work, with significant 

accomplishment in the field by Peter Fishburn (Fishburn, 1970) and later by Ralph 

Keeney and Howard Raiffa (Keeney and Raiffa, 1976) (Watson and Buede, 1987: 21).  

Although this thesis is chiefly centered around work on value models, a general 

understanding of utility theory will help in understanding the discussion on ambiguity 

later in this chapter. 

 
 
2.1.2  Value 
 

 In 1987, Watson and Buede made a very clear distinction between value and risk 

preferences (21).  The von Neumann-Morgenstern utility functions discussed in the 

previous section are used in cases of uncertainty and represent the decision maker’s risk 

preferences (Watson and Buede. 1987: 21).  Value is a measure of worth to a decision 

maker.  Value judgments, preference structures and value tradeoffs from the decision 

maker all contribute to value as a measure of worth (Keeney and Raiffa, 1976: 66)  Value 

measures the worth of a outcome to a decision maker regardless of the probability that 

the outcome will be realized.  That is, value is not concerned with uncertainty, but simply 

the preferences of the decision maker (Watson and Buede, 1987: 21). 

 In Decisions with Multiple Objectives Ralph Keeney and Howard Raiffa make a 

“digression” to draw a clear difference between utility functions as created by von 

Neumann and Morgenstern and the utility function often used by an economist.  

Specifically, Keeney and Raiffa discuss decreasing marginal utility and explain that 

because this has no probabilistic aspects any expected utility calculated from the 
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decreasing marginal utility curves is useless because “expected utiles” has no real 

meaning (Keeney and Raiffa, 1976: 150).  They further describe exactly what is meant by 

a decreasing marginal utility function: 

As an example of our economist’s utility function with decreasing 
marginal utility, suppose we considered 8 utiles as the utility of one day of 
skiing, 14 utiles for two days, 18 utiles for three days, and so on.  Then we 
could say the first day is worth 8 utiles, the second an additional 6, and the 
third another 4.  The marginal utility of each additional day of skiing is 
decreasing.  However, if we had a choice between two days of skiing for 
sure or a lottery yielding either one or three days with equal likelihood, we 
could not say which option should be preferred using the utility function.  
This is so even though the expected number of utiles is 13, whereas it is 14 
for the sure two days skiing.  The concept of “expected utiles” has no 
meaning.  (Keeney and Raiffa, 1976: 150) 
 

In this example, Keeney and Raiffa explain how the absence of uncertainty in the 

decreasing marginal utility function prevents it from having any true meaning as a von 

Neumann-Morgenstern utility function.  This example, for the same reason, is excellent 

in describing the difference between a value function and a utility function.  Further, the 

meaning and use of the decreasing marginal utility is a fair analog to the meaning and use 

of value.  In the example, utiles are measured in whole units and describe worth to the 

decision maker.  If these units were normalized to sum to 1 (assuming that three days 

skiing is the maximum possible outcome for this situation), then one day of skiing would 

now have a utility of 0.44 (8/18), two days of skiing would have a utility of 0.78 (14/18), 

and three days would have a utility of 1 (18/18).  However, in the context of decision 

analysis as described so far, these are not utilities because, as Keeney and Raiffa 

explained in the original example, they do not incorporate any uncertainty.  Instead, the 

decreasing marginal utility has captured the decision maker’s relative value tradeoffs 

among the possible outcomes, i.e. the number of days skiing.  The utility represents the 
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value of each outcome and the decreasing  marginal utility function can be thought of as 

the value function.  In this case, any alternative that provides all three days of skiing 

provides the maximum value (1) for the objective “skiing”.  If, however, an alternative 

only provides 2 days of skiing, the value for the objective “skiing” for that alternative 

would only be 0.78.  From this, it is clear that the decision maker’s “utility,” or worth, in 

the absence of risk or uncertainty in the outcome is his or her value.  Throughout this 

thesis, utility is used to represent the decision maker’s preferences in the presence of 

uncertainty in the outcomes, i.e. risk preference, and value is used to represent the 

decision maker’s preferences when there is no uncertainty in the outcomes of an 

alternative.  

 The research in this thesis is based on the weighted, additive value model in 

Equation 1: 

( )
1

          1
k

j i i ij
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V w v x j p
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In this equation, the value of an alternative is the weighted sum of the values obtained 

from the measures created for each alternative.  The processes for developing this 

equation are presented in section 2.2. 
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2.2  Value-Focused Thinking (VFT) 
 

 Value-Focused Thinking (VFT) was formalized by Ralph Keeney and presented 

in his book Value-Focused Thinking, A Path to Creative Decision Making (Keeney, 

1992).  VFT is a hierarchically structured, multi-attribute decision analysis methodology 

that emphasizes value over alternatives.  Many decision methods focus quite heavily on 

the alternative solutions available for a given decision (Keeney and Raiffa, 1976; Olson 

et al., 1999).  This does not seem abnormal when one considers that, “decision making 

usually focuses on the choice among alternatives,” (Keeney, 1992: 3).  Instead, VFT 

structures the decision problem based on the decision maker’s values.  Ralph Keeney 

wrote, “Values are what we care about,” and then, “Values are more fundamental to a 

decision problem than are alternatives,” (1992: 3).  In this respect, VFT is more than a 

specific methodology.  It is a philosophy as well as a general approach to the science of 

decision making and the process of providing insight to the decision maker. 

 “Values of decisionmakers are made explicit with objectives,” (Keeney, 1992: 

33).  A fundamental objective provides the decision context, the value involved and the 

direction of preference (Keeney, 1992: 34).  Values can be further refined to means 

objectives.  Means objectives represent the specific means by which the fundamental 

objectives can be achieved (Keeney, 1992: 34-35).  The degree to which these means 

objectives are achieved is determined using a measure or measurement scale.  Please note 

that while a measurement scale is used to define an attribute (Keeney and Raiffa, 1976: 

32; Kirkwood, 1997: 12) it is also used in a broader sense in the general literature (and as 

noted at the beginning of this chapter) to indicate all of the “factors of importance” 
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involved in a decision problem (Lavelle et al., 1997: 769).  In the VFT context, the 

“factors of importance” are the decision maker’s values.  To continue with this broader 

usage, this thesis refers to values, fundamental objectives and means objectives 

collectively and alternatively as attributes.       

 As a multi-attribute technique, VFT breaks the decision problem into its 

component pieces based on the values of the decision maker.  The vehicle example 

already introduced in this chapter is an example of a multi-attribute problem.  The 

decision context is the purchase of a new vehicle.  The DM’s values in the purchase of a 

new vehicle guides the VFT process.  These values are structured into a hierarchical form 

(Kim and Han, 2000: 79).  This form is also referred to as a hierarchical attribute tree, a 

hierarchical value tree or a value hierarchy (Keeney, 1992; Kim and Han, 2000: 79; 

Poyhonen, 1998: 7).  Figure 1 provides an example of a value hierarchy: 

Cost Functionality Aesthetics

Purchasing a Vehicle

 
 

Figure 1: Notional Value Hierarchy for a Vehicle Purchase  

 
In Figure 1, “Purchasing a Vehicle,” is the decision of interest.  For this decision, the DM 

values cost, functionality and aesthetics. 

 VFT, as originally presented by Ralph Keeney, is designed to deal with 

uncertainty and is rooted in utility theory (Keeney, 1992: 129-141).  The mathematical 

underpinnings of VFT are in development and use of utility functions (Keeney, 1992: 

129-154).  Keeney refers to the resultant models as value models (Keeney, 1992: 129-

132).  Why use utility functions to develop a value model?  Keeney provides three 
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reasons.  First, the use of utility functions allows him to address the presence of 

uncertainty and risk.  Measurable value functions do not address risk attitudes.  Second, 

concentrating on utility functions allows for a more concise discussion.  Finally, “the 

concepts and procedures for utility functions and measurable value functions are 

analogous,” (Keeney, 1992: 132)  Why a value model instead of a utility model?  Utility 

functions are created using the decision maker’s value trade-offs (which, in turn, came 

from the DM’s value judgments) (Keeney and Raiffa, 1976: 220-222).  As mentioned 

earlier in this section, VFT is more than just a methodology, it is a philosophy for 

approaching decisions.  In cases with no uncertainty, the value principles discussed in 

section 2.1.2 apply.     

 The general VFT methodology and philosophy can be applied to value models as 

well as utility models.  In cases where the value adapted VFT methodology is used, the 

general process follows along the following lines.  1) Identify and structure the objectives 

and criteria important to a decision maker for the decision situation at hand (Keeney, 

1992: 55-98).  This structure often takes the form of an objectives hierarchy that 

continues to break down the component parts of an objective until a final end measure 

can be found.  2) Develop measurement scales for each of the final end measures 

identified in step 1 (Keeney, 1992: 3) These measures, which are often composed of 

scales with different units and vastly different ranges, are assigned a value according to 

some function: ( ) ,  1i iv f x i k= ∀ = K  where ix  is the resulting score of some alternative 

on the measure associated with a single attribute i, and ( )if x  is a monotonically 

increasing or decreasing function whose range is between zero and one  (Kirkwood, 
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1997).  These functions, known as Single Dimension Value Functions (SDVF), are 

created for all k measures.  This mapping translates scores from measures into value.  The 

value is measured from 0 to 1 with higher value being more preferred.   4) Weight the 

competing objectives based on the preferences of the decision maker.  5) Score each of 

the identified alternatives on the measurement scales and convert them to values.    6) 

Aggregate the weighted values from each of the lowest level attributes and determine 

final values for the alternatives.  7) Rank these alternatives and provide insight to the 

decision maker. 

 A decision analysts greatest value to the decision maker is in the ability to 

properly structure a decision situation (Howard, 1986b: 2).  By focusing on values rather 

than alternatives (Keeney, 1992: 3) the analyst is able to accomplish this regardless of the 

current set of alternatives.   A properly structured value model from the decision maker 

can be used not only to rank existing alternatives, but also identify shortfalls and 

strengths in these alternatives based on the objectives and preferences of the decision 

maker (Keeney, 1992: 9).  If these alternatives are unsatisfactory as a whole, the structure 

can be used to develop potentially better alternatives.  Emphasis on values and the given 

stepwise procedure has also been applied using value functions rather than the utility 

functions provided in the  original VFT framework but is still generally referred to as 

Value-Focused Thinking (Beauregard, 2001).   
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2.3  Weights 
 
 
 This section focuses on that portion of VFT concerned with a decision maker’s 

preferences and value trade-offs.  These preferences and value trade-offs are represented 

as weights in a value model.  If the weight for a given objective is higher than the weight 

of another, that objective is considered to be more important to the decision being made 

based on the decision makers values and preference.  The potential interpretation and 

elicitation of these weights is quite diverse and has an impact on how the problem is 

structure and the insight provided (Choo et al., 1999; Poyhonen, 1998).  Some of these 

interpretations include the marginal contribution per unit of the objective in question, 

discriminating power of the objectives, voting values, relative functional importance and 

others (Choo et al., 1999).   

 Regardless of their interpretation, value trade-offs must be tied to the range of the 

raw scores for the measures to which they are linked (Keeney, 2002: 940-941).  This can 

be illustrated with the vehicle example.  In the vehicle example, cost may be considered 

in general more important than aesthetics by the decision maker and one may expect to 

see cost weighted higher than aesthetics.  However, if the range in the cost of each of the 

competing alternatives is quite small, the decision maker may feel that the difference in 

value of decreasing cost from its highest to its lowest may not be overall as important as 

the change in aesthetics.  Of course, exactly what “quite small” entails will be up to the 

decision maker.  In this case, cost will have a lower weight reflecting the small range 

among alternatives and smaller value the decision maker puts on a change of cost within 

that range.  Misinterpretation of these weights, no matter how they are applied, can often 
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lead to incorrect rankings of alternatives and provide faulty insight into the problem 

(Choo et al., 1999). 

 Not only do the weights have potentially differing meanings, but they can be 

elicited from the decision maker in a number of ways.  These elicitation methods are 

inextricably linked to their interpretation.  One thing that weight elicitation methods and 

interpretations have in common is that they result in constant weights (Choo et al., 1999).  

This philosophy of constant weights stems from an early concept that the weights fall into 

the category of decision variables and as such can be set to any level by the decision 

maker (Spetzler et al., 1972).  As described in the Problem Statement in section 1.2, 

decision analysis methodologies assume that these weights can be exactly specified by 

the decision maker.   

 Among the various weight elicitation methods used, the exact information 

obtained from the decision maker changes.  In some cases, the information provided by 

the decision maker is not the weights that will be used to solve Equation 1 but rather 

other preference structures that can then be used to calculate these weights (Poyhonen 

and Hamalainen, 2001: 569-572).  Regardless of the method used, it is generally 

accepted, to provide consistency in application, that the weights (directly or calculated) 

must sum to 1 (Poyhonen and Hamalainen, 2001: 570; Kirkwood, 1997: 70).  Whether 

weights are elicited directly or are derived from other preference statements, they can be 

obtained either locally or globally.  A value hierarchy is grouped into tiers.  Each tier 

represents further breakdown and delineation of the “parent” attributes in the tier above.  

Weights can then be elicited based on each tier (hierarchical weighting or local weights).  

Weights could also be elicited directly from the lowest level attributes in the hierarchy 
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(non-hierarchical weighting or global weights) (Poyhonen, 1998: 8).  In the case of 

hierarchical weighting, the final weights used in the calculation of Equation 1 are found 

by multiplying the local weights to the end of each branch.  In non-hierarchical 

weighting, the global weights are used directly in the calculation of Equation 1. 

 
 
2.4  Direct Weighting 
 

 Direct weighting involves having the decision maker provide the exact numerical 

weight (from zero to one) for each of the attributes in question.  This is often 

accomplished by telling the decision maker he has 100 points and must allocate all of 

them among the objectives.  This is also sometimes referred to as the “100 balls” method.  

These direct weights can easily be seen as a direct representation of the value of the 

attribute relative to the whole (Poyhonen et al., 2001: 571).  In the vehicle example, a 

decision maker may say that cost is 40 points (40 out of a possible 100 is 40% of the 

decision) and therefore has a weight of 0.4.  This weight has meaning because we know 

that the total sum of the weights must be 1.  If the sum of the weights were something 

other than 1, 0.4 would no longer mean 40% of the decision (it would not account for 40 

points out of 100).  The number provided by the decision maker is the percentage of the 

decision encompassed in that attribute directly.  Furthermore, the information provided 

about any given weight offers no direct indication of the weights of the other attributes.  

Only through their relationship to the whole (one) can relative proportionality be 

determined.    
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 Direct weighting can be used locally or globally.  When used locally, it assesses 

value trade-offs within a given branch and tier and assigns some portion of the whole 

value to each of them.  When used globally, all final branch ends are compared for value 

tradeoffs and weights are assigned accordingly.  

 

2.5  Independent Scale Weighting 
 

 Another method that has been used is independent scale weighting (Keeney and 

McDaniels, 1996; Lavelle et al. 1997).  With the independent weighting technique, the 

information obtained from the decision maker relates the importance of each attribute to 

some independent scale that may or may not be directly related to each attribute.  

Whether directly related or not, the same scale is used for all attributes.  Some scales that 

have been used are money (Keeney and McDaniels, 1996) and simply importance 

(Lavelle et al., 1997: 772).  In each case, an attribute is given some value along the scale 

used.  To provide weights that sum to 1, the value of each attribute along the independent 

scale is divided by the sum of the values of all of the attributes.  This normalization 

procedure relates the actual information obtained to the weights used. 

 In the car example, an independent scale from 1 to 10 might be used to determine 

the importance and subsequent weights of the three attributes.  The decision maker is 

instructed to identify the importance of each attribute on this scale with 10 being very 

important to the decision maker and 1 being of very little importance.  The decision 

maker may decide that cost is very important (assigns a 10), functionality somewhat 

important (assigns a 7) and aesthetics of little importance (assigns a 4).  The sum of these 
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three values is 21.  After normalizing, the actual weights would be cost = 10/21 = 0.477, 

functionality = 1/3 = 0.333, and aesthetics = 4/21 = 0.190. 

 Independent scale weighting does not provide a value that is directly relative to 

either the whole or among attributes.  Knowing that cost gets a 10 in importance on a 

scale of 1 to 10 does not tell us how much of the value of the whole decision is captured 

in the cost until the values are normalized.  There is no direct interpretation of “10” with 

respect to the whole decision.  Similarly, there is no direct relationship among attributes 

by knowing only a single attribute value.  Although cost is 10, there is no way to know 

how that might compare to other attributes unless their value is known.  If the other 

attributes each get a 1, then cost is much more important relatively.  If, however, the 

others are also given a 10, then cost, while important to the decision (as seen by receiving 

the highest score on the scale) is no more important than the others.  But, in both cases, it 

is necessary to have more information than just the value of cost. 

 
 
2.6  Swing Weighting 
 
 
 Swing weighting is the third method reviewed in this thesis (Kirkwood, 1997; 

Keeney, 1992).  There are two variants to this method.  The first variant is to take each 

measure independently and consider what increase in value of the alternative as a whole 

would result from swinging that measure from its lowest possible score to its highest.  

This is done with all attributes and the resulting increases in value are ordered from least 

to greatest.  Each increment is then assessed as some multiple of the least important 

increment.  These values are normalized to provide the weights for the objectives 
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(Kirkwood, 1997: 68-72).  The second variant involves taking the objectives in pairs (A 

or B) and holding all other objectives constant, deciding which of the pair, A for example, 

the decision maker would rather swing from its lowest to its highest value.  The decision 

maker must also provide the strength of this preference (Kirkwood, 1997: 68-72).  This is 

done with all pair wise comparisons and the results normalized.  If inconsistencies exist 

in the comparisons, they can be discussed with the decision maker and resolved.  This 

method obtains information from the decision maker that relates one attribute to another.  

While the attribute of lowest importance is generally used as the baseline, this is not 

necessary. 

 
 
2.7 Decision Making in the Presence of Ambiguity 
 
 
 “Most, if not all, decisions are made under uncertainty …” (Wallace, 2000: 20).  

The decisions faced by individuals, groups and organizations encompass ambiguity as a 

major aspect (Watson and Buede, 1987: 11; Howard, 1983:7).  As discussed earlier, 

uncertainty is considered in terms of the performance of an alternative or the possibility 

of outcomes.  This uncertainty can stem from imprecision of measurement or the 

uncertainty inherent in trying to predict the future performance of a system not yet in use.  

This research, however is chiefly concerned with the situation in which the weights for 

the attributes are not known precisely. 

 At this point, it is important to define three terms: uncertainty, variability, and 

ambiguity.  Uncertainty is a lack of knowledge about the true state of some quantity 

(Frey, 1993: 2).  If the true state of some variable is known, but changing according to 
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some other variable (often time or individual samples), then that quantity exhibits 

variability.  In this research, these two aspects of imprecision in information are 

collectively referred to as ambiguity.  The term ambiguity will be used when it is not 

necessary to differentiate the nature of the imprecision, when both types are being 

referred to, or when this information may not be known.  Uncertainty or variability are 

used in those cases in which their specific definitions apply and are relevant.  Regardless 

of the source or cause, it is very beneficial to have a decision analysis model that can 

account for the presence of ambiguity. 

 
 
2.7.1  Uncertainty in Measures 
 

 Uncertainty in the performance of an alternative or the possible outcomes has 

been a part of decision analysis models from the very beginning and almost all normative 

techniques are designed to account for it.  Uncertainty in the performance of alternatives 

refers to the incomplete knowledge of how a given alternative will score against some 

measure or the natural uncertainty in the performance the alternative will exhibit through 

time (Wallace, 2000: 20).  This uncertainty can also rise from the uncertainty of the 

environment in which the decision will ultimately be made (Clemen, 1996: 2).   

 
 
2.7.2  Decision Makers 
 

 The nature and role of the decision maker can often affect the structure and 

technique applied.  The most common use of “Decision Maker” or DM in the decision 

analysis framework is that of a single decision maker (Buchanan et al., 2001; Lavalle, 
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1978).  This idea of a single decision maker allows analysts to make simplifying 

assumptions in their models by not considering the interaction of the various parties to 

the decision and their possibly competing preference structures (Keeney and Raiffa, 

1976: 516).  However, it is becoming more apparent that many decisions involve not just 

a single decision maker, but a group that is responsible for making a decision.  Another 

interpretation of the “decision maker” involves looking at stakeholder groups (Keeney 

and McDaniels, 1999).  Even if a single person is responsible for making a decision, that 

person must often take into account not only their own preferences, but those of other 

stakeholders in the process. 

 Consensus is often the goal of group decision making (Ellis and Fisher, 1974: 

141-143).  Coming to an exact consensus through discussion may be a very lengthy and 

difficult process and may leave many members in the group feeling as though their views 

are not adequately represented (Ellis and Fisher, 1974: 235-246).  Another issue involved 

when dealing with groups and group consensus is that a group will over time develop its 

own distinct identity (Rothwell, 1992: 183-187).  This identity and the consensus it forms 

may not truly represent the preferences of the individual members.     

 
 
2.7.3  Weight Ambiguity 
 
 
 Recent trends in decision analysis have pointed out the possible fallacy of 

assuming that the weights placed on objects are known with absolute certainty (Kelley 

and Thorne, 2001; Levary and Wan, 1998; Kim and Han, 2000; Lavelle et al., 1997; 

Stewart, 1995).  As a fairly recent relaxation of the assumption that preferences and value 
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trade-offs can be exactly determined, there is not yet a lengthy body of literature.  There 

are several potential sources of ambiguity in objective weights.  Even a single decision 

maker with plenty of time may not be able to exactly define and articulate his or her 

preferences.  Researchers in this area have used terms like “partial information” and 

“incomplete knowledge” to describe this phenomenon, but regardless of the terminology, 

the concept is that the decision maker may not be able to completely resolve the complex 

changing environment in which the decision must be made (Kim and Han, 2000). 

 Far more likely than uncertainty within a single decision maker is the variability 

inherent in group processes and multiple stakeholders.  The Keeney, McDaniels study for 

BC Gas, clearly illustrates the wide range of responses for value tradeoffs from the 

various stakeholders (Keeney and McDaniels, 1999).  At times the variations involve 

differing orders of magnitude.  It may be very difficult to represent these ranges as a 

single constant value.  Possible solutions to this problem have included analytical 

solutions using greatly simplified MAVT models (Lavelle et al., 1997) and  a simulation 

approach based on building a probability of specific alternative rankings used by Kelly 

and Thorne (2001).  Simulation was also used in conjunction with a descriptive decision 

analysis model, AHP, by Levary and Wan (1998).  Kim and Han used a recursive 

mathematical programming approach to resolve uncertainty (2000). 

 
 
2.8  Monte Carlo Simulation 
 
 
 Monte Carlo Simulation is a technique used when ambiguity exists in a system to 

develop an empirical probability distribution for some measure of the system (Kalos and 
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Whitlock, 1986: 129-130).  More specifically, it is a numerical technique in which 

various input parameters are specified by some probability function.  An output measure 

defined by some function of these random input variables will itself be a random 

variable.  While probability theory can possibly provide an analytic solution to this 

function of random variables, it may be extremely difficult.  In some cases there may not 

exist a closed form solution.  To account for these difficulties, Monte Carlo techniques 

make a random draw from each of the input distributions underlying the model and use 

the result in the governing function for a given output variable.  This process will provide 

one sample point from the distribution of the output variable.  When a series of random 

draws is conducted many times in an established experimental design, an empirical 

distribution of the output variable can be constructed.  This empirical distribution can 

then be used to address questions about the output variable. 

 Monte Carlo simulation is a logical alternative to standard expected utility theory 

(Clemen, 1996: 410-414).  Instead of merely taking the expected utility of an alternative 

(in the case of risk preference and uncertainty in outcomes), analysts can use this 

technique to construct an empirical distribution of the overall utility of the alternative.  

Alternatives can then be ranked or investigated based on their distributions as well as 

their expected values.  When ambiguity in the weights is present, Monte Carlo simulation 

can be used in the same manner it is used in the presence of ambiguity in the outcomes.  

 Monte Carlo techniques were first used to conduct numerical integration involved 

with the development of the atomic bomb (Hammersly and Handscomb, 1964: 6-9).  In 

this and other deterministic applications, Monte Carlo simulation is used to estimate the 

value of integrals and other mathematical problems where no closed form analytical 
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solutions exist.  In the 1950s, the growing development of operations research provided a 

new set of problems that could benefit from repeated sampling (Hammersly and 

Handscomb, 1964: 8-9).   

 Using weight distributions to replace point estimate weights in the weighted, 

additive value equation does not over complicate the equation itself.  However, it’s the 

solution to this equation that requires multiple integration techniques (Lavelle et al., 

1997: 773-779).  This integration may, through more complex decision structures, 

become quite difficult and unwieldy for practical applications.  This problem is 

highlighted further when using direct weighting in which the weight distributions are not 

independent due to their need to sum to 1.  Monte Carlo simulation is useful in those 

cases where a problem can be formulated theoretically, but not solved that way 

(Hammersly and Handscomb, 1964: 3).  Rather than develop the analytical solution from 

the value equation which now contains random variables, Monte Carlo simulation is used 

to sample from each of those random variables in turn and computes the solution to the 

equation.  Repeated random draws create an empirical distribution for the final value of 

the alternative.  This can be used when no analytical solution is possible. 

 The resulting empirical distribution need not approximate a normal distribution in 

order to derive inferences about certain distribution parameters (Davison and Hinkley, 

1997: 25).  Once an empirical distribution has been created for the final value of each 

alternative, they can be compared to determine the most attractive decision to the 

decision maker. 
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2.9  Selecting Alternatives in the Presence of Ambiguity 
 
 
 When Value-Focused Thinking is used to establish single constant values for 

alternatives in question, ranking the alternatives is a fairly straightforward matter.  

Human judgment and sensitivity analysis can be used to provide insight into alternatives 

whose overall value are relatively close.  These alternatives can be evaluated further, but 

the results will again be some point estimate of value that can be easily ordered.  

Selecting the best alternative is not, however, as simple when the values of the 

alternatives are represented by some probability distribution.  Chapter 3 will discuss the 

use of dominance and statistical tests to help determine which alternatives should be 

selected over others.  Although they are included, the relative merits of the techniques 

used to compare alternatives is not addressed in this thesis.   

 

2.10  Examples 
 

 As a new adaptation of VFT and an untested method for employing Monte Carlo 

Simulation, it is important to provide some level of justification that the methodology 

proposed in this research is appropriate.  To this end, two examples are presented.  The 

first example involves finding a location for a new airport.  This first example was used 

to incorporate weight ambiguity and proposed an analytical solution techniques to arrive 

at distributions of value for each alternative.  By simulating this example, a comparison 

can be made between the simulated results and the analytical results.  This comparison 

will show that the simulated results closely approximate the analytical results.  The 

second example involves selecting computer systems to maximize information assurance.  
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This example was chosen to demonstrate the methodology and its results on a more 

complex value hierarchy. 

 

2.10.1  Mexico City Airport Citing 
 
 
 This first example illustrates the comparison of results between the analytical and 

simulated results.  In 1997, the journal Computers and Industrial Engineering published 

an article by Lavelle et al., “A Method for the Incorporation of Parametric Uncertainty in 

the Weighted Evaluation Multi-attribute Decision Analysis Model.”  This article presents 

a multi-attribute utility model based on multi-attribute utility theory (MAUT) described 

by Keeney and Raiffa (Keeney and Raiffa, 1976: 436-472).  The Lavelle et al. model is 

referred to as the weighted evaluation (WE).  The WE model is a simplified adaptation of 

the weighted additive model shown in Equation 1.  The simplifying assumptions are: a) 

attribute independence, b) linear utility functions and c) additivity of multiple attributes 

(Lavelle et al., 1997).  The assumptions of attribute independence and additivity of 

multiple attributes allows the authors to use the additive utility function: 

 

 
1

, 1, ,
k

j i ij
i

Z W R j p
=

= ∀ =∑ K   (2) 

 
 
where Zj = the weighted evaluation of alternative j, Wi = the weight of attribute i, Rij = the 

rating of alternative j on attribute i, k = the total number of attributes, and p = the total 

number of alternatives (Lavelle et al., 1997).  Each of the alternatives is rated on an 

independent scale of  0 to 100. 
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 This WE model is then converted to a probabilistic weighted evaluation (PWE) by 

replacing the constants used in the Equation 2 with random variables.  Lavelle et al.’s  

PWE method uses uniform, triangular and beta distributions to model uncertainty in both 

the weights on the attributes and the ratings for each alternative on each attribute.  These 

distributions are used in calculating the first three central moments of the resulting 

distributions for the alternatives.  The first central moment, the mean, is analogous to the 

point estimate results from the WE model.  The second central moment, variance, looks 

at the spread of the distribution around this mean.  Finally, the third central moment, 

skewness, gives a measure of how symmetrical the resulting distributions are.  These 

three moments are then used to develop a normal approximation for the distribution of 

each alternative.  The PWE does not ensure that the weights sum to 1.    

 
 
2.10.2  Information Assurance 
 
 The second example used later in chapter 4 is the Information Assurance problem 

developed by Lt Joe Beauregard (Beauregard, 2001).  Lt Beauregard modeled the effects 

on information assurance protection for a given computer security system using the 

hierarchy in Figure 2.   
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Figure 2: Weighted Information Assurance Hierarchy (Beauregard, 2001) 

 
Figure 2 provides the name of each objective and sub-objective.  It also includes two 

weights.  The first weight given is the local weight.  These local weights are given as a 

fraction based on the swing weight coefficients.  The numerator of this fraction is the 

swing weight coefficient for the objective or sub-objective in question.  The denominator 

is the sum of the swing weight coefficients in each branch and tier.  The swing weight 

coefficients shown (the numerators) are assumed to be uncertain later in this thesis.  The 

second weight, shown in parentheses, is the calculated global weight.  This is the product 

of the local weight of the objective or sub-objective in question with the local weight of 

each successive parent objective or sub-objective above it.   
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 This decision problem also included more than one measure for some of the final 

sub-objectives.  In this research, the weights on those final measures are modeled as the 

point estimates given.  This research only models ambiguity on the swing weight 

coefficients used in the local weights of the objectives and sub-objectives. 

 This chapter presented the framework for value models, VFT and the existence of 

weight ambiguity.  It also discussed some of the implications of weight ambiguity and 

some possible solution methods.  Two examples that will be used in Chapters 3 and 4 

were also presented.  The proposed methodology using Monte Carlo simulation to 

incorporate weight ambiguity in a VFT decision problem is further explained in Chapter 

3. 
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3.  Methodology 
 
 

 The methodology presented in this chapter diverges from Value-Focused 

Thinking in the determination of the weights.  At this point, VFT dictates that the 

decision makers preferences be evaluated in terms of weights on the individual attributes 

in the hierarchy.  A basic assumption of this research is that the weights elicited are not 

constant.  It further assumes that a distribution of weights can be developed.  While the 

exact technique for building the distribution from the decision maker’s preferences is not 

considered here, the weight elicitation method itself is important.     

 
 
3.1  Simulation 
 
 
 For experiments and analysis involving Monte Carlo simulation, certain aspects 

must be decided before the simulations can be run.  First, the various input distributions 

must be determined.  Then, the number of replications needed to achieve the desired 

research goals must be determined.  A random seed is chosen and then random numbers 

are then drawn from the input distributions and used in accordance with the underlying 

purpose of the simulation.  In this research each set of random draws is used to calculate 

the weights in Equation 1.  The exact mechanics used for designing the simulations in 

this research are discussed at length.   

 Once the model has been built, the number of replications needed must be 

decided.  Current computing power makes a very large number of runs both inexpensive 

and quick.  This allows the decision analyst to determine the necessary number of 
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replications to achieve a desired power or accepted error without being constrained by 

time or money.  The equation for finding sample size is based on a specified Type I and 

Type II error, or α and β respectively.  This allows n to be computed based on desired 

power and confidence (Hines and Montgomery, 1990: 299).  Equation 3 gives the basic 

form of the equation that was used to calculate the number of replications: 

 

( )
2

2 2
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=       (3) 

 
where Zα/2 and Zβ come from the cumulative normal distribution for α/2 and β 

respectively, σ2 = the population variance, and δ2 = the target difference being detected.  

While the population variance may not be known, it can be estimated.  After each 

alternative is scored and the single dimension values calculated.  Each alternative will 

exhibit a variance (possibly 0) in its single dimensional values.  This variance acts as an 

upper limit on the final variance of the score for the attribute.  Using the largest variance 

from the group of alternatives can serve as a conservative estimate of the population 

variance.  The variance of a constant times a random variable is equal to the constant 

squared times the variance of the random variable (Freund and Walpole, 1987: 166-167).  

The single dimensional value of each attribute acts as the constant and the weight is a 

random variable.  Since all of these values are less than one, their squares will be less 

than the original value.  In essence, the single dimensional values (between 0 and 1) serve 

to scale down the variance of each weight.  When these are aggregated, the sum is 

likewise scaled down. 
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3.2  Direct Weighting 

 
 In the presence of ambiguity, direct weighting can be used to elicit a distribution 

or range of possible weights rather than a single constant weight.  As was discussed in 

Chapter 2, this possibility of eliciting a weight distribution is assumed.  The methodology 

being proposed addresses how to handle the distributions once they have been obtained.  

If this direct weight distribution is used, the weights obtained from the decision maker 

must follow a logically consistent meaning.  Specifically, any possible weight value in 

the provided distributions must actually be possible within the restriction that the weights 

sum to 1.  If each weight in the specified range of the distribution is not possible, then the 

decision maker has said that a given attribute could possibly have a weight that it 

logically could not.  This is the inevitable problem with combining independently elicited 

weight distributions in a fundamentally dependent situation.  Each weight must equal one 

minus the sum of all the other weights.  Three possible approaches to resolving this 

problem are proposed in this section: direct sum, filtered sum, and normalization. 

 Consider an example using the vehicle decision to illustrate this point.  A decision 

maker weights the hierarchy in the following manner, Cost ~ U(0.0,0.6), Functionality ~ 

U(0.4,0.6) and Aesthetics ~ U(0.1,0.3).  The proposed methodology states that for logical 

consistency the decision maker must ensure that the most likely values (or means in the 

case of uniform distributions) sum to 1.  Were the decision maker confined to provide 

only a constant weight, it is assumed that the most likely value would be provided.  For 

this example, 0.3 + 0.5 + 0.2 = 1, and the test for consistency is passed.  The 

methodology also proposes that every possible value of each distribution must be 



   

44 

realizable.  It can immediately be seen that not every possible value of cost can be 

achieved.  If some random draw from the cost distribution equals 0.05, then the sum of 

the remaining weights must be 0.95 to have the total weights continue to sum to 1.  The 

maximum possible values of the remaining two distributions only sum to 0.9.  It is clear 

that any possible draw of random weights from the provided distributions that sums to 1 

will never allow the weight for cost to go below 0.1.  Therefore, the provided weights do 

not allow for every distribution to be completely sampled and the decision maker must be 

re-engaged to provide weight distributions that are more consistent.  Once consistency 

has been ensured, the method employed must ensure input integrity.   

 There may be a difference between the decision maker specified weight 

distribution, the input distribution, and the actual distribution of the weights used in the 

calculations of the final value.  This is an extension of the idea just discussed.  If the 

entire distribution is not sampled, then the actual distribution of the weights used to 

calculate the final value is not the distribution specified by the decision maker.  It is 

possible for the same loss of input distribution integrity to occur even if each distribution 

is completely sampled.  If this happens, the actual weights used to compute the value of 

an alternative differ from the distribution the decision maker decided the weight should 

come from.  This disconnect creates a disconnect between the decision maker’s true 

preferences and the actual numbers used to calculate the value of an alternative. 

 The vehicle example will continue to be used to illustrate the three techniques for 

direct weighting, but with a new set of weight distributions.  Since this is a notional 

example, n = 1000 was chosen.  Figure 3 shows the weight distributions that were chosen 

to illustrate the three direct weighting techniques. 
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Cost
triang(0.25,0.3,0.35)

Utility
triang(0.3,0.5,0.7)

Aesthetics
triang(0.0,0.2,0.4)

Purchasing a Good Car

 

Figure 3: Notional Car Example, with weights 

 For this example, it is not necessary to identify any alternatives or individual 

alternative scores.  Simply using the weighted hierarchy is sufficient to demonstrate the 

problems identified.  The resulting value from the single dimension value functions 

would only serve to scale the various elements of the final alternative value.  

 The first method employed was to simply allow the weights to be randomly 

generated and summed.  This provides a distribution around the final sum as seen in 

Figure 4. 
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Figure 4: Direct Weighting, sum of weights 
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 The result from simulating the weights alone with no single dimensional values 

from the attributes is the same as simulating an alternative who scored perfectly on all 

measures.  The low score on this chart is 0.61.  If an alternative were to score perfectly on 

all measures, its value should be 1.0, not 0.6.  The high for this method was 1.33.  Again, 

if 1 is a perfect score, it would be impossible for an alternative to score above that. 

 Allowing for all possible independent random draws, the direct sum technique, 

provides results that are inconsistent with reality.  It is possible with this technique to 

have an alternative score almost perfectly and yet still have a low value simply because 

of the choice of weights.  This is the least preferred of the three techniques and should not 

be used.   

 The second method for simulating direct weight distributions is to filter out any 

random pull that is outside a given band.  To demonstrate this technique, [0.99,1.01] was 

chosen.  One problem of filtering is that it greatly increases the number of replications 

needed to get the proper (as calculated with Equation 3) sample size.  To demonstrate the 

results from filtering, the number of replications was increased to 10,000.  However, only 

373 trials were accepted by the filter.  This is a simple hierarchy.  When the problems 

become more complex, even fewer replications will randomly fall within the desired 

filter.  The Figure 5 shows the adjusted value hierarchy for this filtering example. 
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Cost
triang(0.0,0.4,0.4)

Utility
triang(0.5,0.5,0.9)

Aesthetics
triang(0.1,0.1,0.5)

Purchasing a Good Car

 

Figure 5: Filtered Car Value Hierarchy 

 Closer examination of the weight distributions used show that they meet the range 

consistency criteria specified previously in this section, however, they lack input 

distribution integrity.  Figure 6 shows the decision maker provided weight distribution for 

cost as a sloped line representing the triangle distribution specified.  It also overlays the 

actual empirical distribution that was created by the filter and ultimately used in the 

calculation of alternative values. 
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Figure 6: Cost weight for filtered car example 

 An inspection of Figure 6 shows that the distribution used does not actually equal 

the one specified.  This problem appears to be mitigated as input distributions become 
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less skewed.  However, there is no guarantee that a complex decision problem will not 

contain some fairly skewed distributions.  Figure 7 implies that filtering provides a more 

accurate representation of input distributions when weights are more symmetrically 

distributed. 

 

Cost Weight for Vehicle Example, symmetric weighting
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Figure 7: Cost weight, symmetric weights 

 
 Filtering partially alleviates the problem of the sum of the weights differing 

greatly from 1.0 by restricting the resulting sum to a narrow interval around 1.0.  The cost 

of this, however is more replications.  In the first filtering example, less than 4% of the 

trials were acceptable.  As hierarchies become more complex, this percentage may be 

even lower.  The second problem associated with filtering relates to the integrity of the 

input distribution.  Although all values of the input distributions are possible, the 

resulting form of the distribution after filtering may not be the same as the input. 

 The final method available is normalization.  For this example, the number of 

replications was set back to 1000 and the original value hierarchy restored.  This method 
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simply made a random pull from each specified distribution and normalized to 1.  The 

first problem with this is that the interpretation of the weights becomes lost.  The process 

of normalization breaks the connection between the weight and the whole (which should 

always be 1).  When a decision maker specifies a direct weight range from 0.0 to 0.4, the 

resulting random pull should have the interpretation of the original intent.  That is, if the 

random pulls ends up 0.3, this should be 30% of the final value.  Normalizing breaks this.  

Now, a random draw of 0.3 for Aesthetics could range from 22.2% (0.3 ÷(0.35 + 0.7 + 

0.3)) to 35.3% (0.3 ÷(0.25 + 0.3 + 0.3)).  This may not seem critical, after all it is still in 

the specified range.  However, Figure 8 gives a more glaring example of the problem 

with normalization from the same value hierarchy . 
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Figure 8: Cost Weight for Normalized Car Example 

 Normalization solves the biggest problem of the direct sum technique by simply 

dividing each attribute weight by the sum of the weights for each random draw.  It also 

avoids the increase in replications caused by filtering.  However, as Figure 8 
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demonstrates, this process ultimately allows for weights that the decision maker did not 

specify as possible.  Normalization can also cause input integrity problems.    

 This section has demonstrated that while structuring a decision problem with 

weight ambiguity by using direct weighting may not be too difficult, the actual simulation 

of that results can be problematic.  These examples illustrate a number of problems 

inherent in each of the proposed techniques.  However, if the analyst can afford the time 

and resources for more replications and if the decision maker has provided symmetrical 

weight distributions, filtering offers the least deviation from the stated constraints of 

consistency and integrity. 

 

3.3  Independent Scale Weighting 
 
 Since the weights are calculated rather than elicited when using independent scale 

weighting and swing weighting, the issues addressed in the previous section do not apply.  

The entire distribution will always be sampled and the process of normalization always 

ensures that the sum of the calculated weights is 1. 

 The PWE method as described by Lavelle et al. uses a weighting technique based 

on an independent scale.  In this case the scale is the importance to the decision maker 

and ranges from 0 to 100.  Each attribute was independently evaluated against this scale 

to develop an importance.  These importance weights were normalized to provide a 

weight from 0 to 1.  The simulation process for this example did not address the 

weighting method nor the technique for developing the distributions for the model.  

Rather, the simulation process made a random draw from each of the input (independent 

scale weighting) distributions.  At each set of random draws, the independent weight 
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coefficients were normalized.  These normalized weights were used to calculate the final 

values found in the final value distributions.  This process is illustrated in the first 

example in Chapter 4. 

 
 
3.4  Swing Weighting 

 
 As previously noted, swing weighting develops relative relationships between the 

attributes.  Any method for handling ambiguity must preserve this quality.  It is 

inconsistent to develop a set of relative multipliers, normalize them into weights, then try 

to assess a distribution around these weights.  The decision maker has provided his or her 

preferences on the attributes relative to other attributes.  Trying to then obtain 

distributions based on the numerical weights breaks this connection between the weights 

of the attributes.  Consistent interpretation of uncertain quantities must be maintained.  If 

one attribute is twice as important as another in the most likely case, all other possible 

relationships must be made under the same condition of one attribute relative to another.  

To preserve this, the swing weight coefficients are the quantities that are allowed to vary. 

 When weights are obtained through swing weighting, many of the issues 

discussed previously are no longer applicable and some of the difficulties encountered 

with direct weighting are similarly resolved.  Because swing weights are defined relative 

to each other, they must be normalized in order to develop weights that can be 

appropriately used in Equation 1.  Because of this inherent need to normalize, requiring 

that any given random draw sums to one is moot.  Similarly, the requirement that the 

input distribution be fully sampled is also no longer a factor.  Since the specified 
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distributions are sampled before creating weights that sum to 1, every part of the input 

distribution can always be used, no matter how small or large.  Normalization will simply 

force the other weights to change to compensate for this.  Finally, input integrity is no 

longer as important.  The numerical weights used in calculations provide only indirect 

resemblance to the swing weight coefficients provided by the decision maker.  The 

distribution of these numerical weights will likewise have little connection (in terms of 

distribution form or parameters) to the input distribution. 

 The commonality between swing weighting and direct weighting is that the form 

of the input distributions will impact whether the mean of the final alternative 

distributions equal the result of using the most likely case as point estimates.  This issue 

is not, however, as clear cut as it is with direct weighting.  In swing weighting, an input 

distribution can be symmetric, but the normalization process calculates weights in a 

disproportionate manner.  

 Standard swing weighting identifies the lowest ranked attribute and holds this as 

the baseline.  As long as the baseline stays constant, any swing weight coefficient (not 

necessarily the lowest) can be used.  

 

3.5  Selecting Alternatives in the Presence of Ambiguity 
 
 
 When Value-Focused Thinking is used to establish single constant values for 

alternatives in question, ranking the alternatives is a fairly straightforward matter.  

Human judgment and sensitivity analysis can be used to provide insight into alternatives 

whose overall values are relatively close.  These alternatives can be evaluated further, but 
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the results will again be some point estimate of value that can be easily ordered.  

Selecting the best alternative is not, however, as simple when the values of the 

alternatives are represented by some probability distribution. 

 

3.5.1  Dominance 

 
 Dominance has been used when uncertainty in the alternatives’ scores are present 

as a means of identifying alternatives that are more desirable than others (Eum et al., 

2001; Lee et al., 2001; Howard, 1966: 100-102; Langweich and Choobineh, 1996).  

There are two forms of dominance to consider: deterministic and stochastic.  In the 

condition where more is preferred, deterministic dominance occurs when the lowest 

possible value of an alternative (A) is higher than the highest possible value of another 

alternative (B) (Clemen, 1996: 123-127).  In this case we say that alternative A 

deterministically dominates alternative B.  Practically speaking, if a decision maker can 

always get a higher value with A, regardless of variation, there is little reason to select B.  

The second form of dominance is stochastic dominance (Clemen, 1996: 123-127).  

Stochastic dominance can most readily be seen by plotting the cumulative distribution 

function (CDF) of the alternatives (Clemen, 1996: 123-127).  If alternative A has an 

equal or greater probability than alternative B at every possible value (from 0 to 1), we 

say A stochastically dominates B.  Figure 9 demonstrates stochastic dominance. 
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Figure 9: Stochastic Dominance 

 
In this example, the alternative labeled ESM stochastically dominates the Baseline.  The 

Baseline starts at a lower overall value and at no point in the cumulative distribution is 

more of the baseline at or above a higher overall value.  

    

3.5.2  Statistical Tests 

 
 One of the advantages of having an empirical distribution is that it allows for 

statistical analysis on the means.  For any two given alternatives, a hypothesis test can be 

used to determine if there is a significant difference in the means or variances.  It may 

also be appropriate if the standard error of the mean is “sufficiently large.”  

Unfortunately, “sufficiently large” must be judged on a case-by-case basis. 

 The following hypothesis test can be used for identifying statistical differences in 

the means for any two alternatives (Hines and Montgomery, 1990: 312-315).  To follow 
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This is a paired t-test.  Since for any given random draw of weights, two alternatives are 

linked by those given weights, a paired t-test is applicable.  In the test outlined here, the 

null hypothesis, H0, says that the difference in means is zero.  In this case, the test is 

attempting to discern if the means are equal.  The test statistic is: 
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where: 
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In this case, 1 2 , 1, ,j j jD X X j n= − = K ,  the difference between the alternative values at 

any given draw.  The null hypothesis is rejected if 0 2, 1nt tα −>  or if 0 2, 1nt tα −< − .   
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3.6  Methodology Summary 
 
 
 After the decision hierarchy has been built, the weight elicitation method must be 

chosen and the simulation model built.  Once the model has been built, an appropriate n 

must be determined.  Following the determination of n, the exact process for simulating 

the problem is dependent on the weight elicitation method chosen.  If direct weighting is 

used, a number of issues are involved that must be considered to maintain consistent and 

meaningful interpretation of the weights.  There are a number of different techniques to 

simulate these direct weights.  While the filter method still has shortcomings, this 

approach is by far the preferred method.  Independent scale weighting and swing 

weighting are very similar in that they both resolve many of the issues involved in direct 

weighting.  They are also similar in their use of normalization to transform decision 

maker preferences into weights.  In both independent scale weighting and swing 

weighting, the information simulated is not the weights, but rather those relative 

quantities provided by the decision maker.  Figure 10 maps the methodology presented in 

this chapter. 
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Figure 10: Methodology Flow Chart 
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The methodology presented in this chapter follows the flow chart provided in Figure 10.  

The steps given are further described as:  1) Identify and structure the objectives and 

criteria important to a decision maker for the decision situation at hand.  This also 

includes identifying any sources of ambiguity.  Specifically, identify if there will be any 

ambiguity in the weights obtained later in the process.  2) Develop measurement scales 

for each of the final end measures.  3) Create Single Dimension Value Functions to 

convert raw measurement scores to values.   4) Using the decision structure and possible 

sources of ambiguity, determine which weight elicitation method (direct, swing or 

independent scale) is most appropriate.  5) Using the weight elicitation method chosen, 

obtain relevant weight information from the decision maker.  6) With the information just 

obtained, build the input distributions needed to determine weights.  7) Determine the 

appropriate number of replications needed.  8) Build the simulation based on the 

elicitation method chosen and the distributions available.  9) Score each of the identified 

alternatives on the measurement scales and convert them to values.  10) Run the 

simulation for the number of replications determined.  11) Identify the empirical 

distributions, and their various parameters (e.g. mean and variance), for each alternative 

that result from the simulation.  12) Compare alternative distributions through 

observation, dominance and statistical tests on parameters.  13) Perform sensitivity 

analysis on the form and parameters of the input distributions.  Other sensitivity analysis, 

as appropriate, can also be conducted.  14) Through the comparisons in step 12 and the 

sensitivity analysis in step 13, provide insight to the decision maker on the relative value 

of the alternatives and any possible consequence of realistic changes in the decision 

structure or inputs. 
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 This flow chart does not represent a single process, but rather an iterative 

approach in which many steps may result in reevaluating some previous step.  The 

possible iterations and feedback loops have been omitted from the flow chart to eliminate 

confusion and highlight the primary flow of the process. 

 This chapter opened with a discussion of building a simulation model.  The three 

weight elicitation methods under consideration were then discussed.  This discussion 

included some of the specific techniques that could be employed to incorporate the 

weight distributions into the simulation model.  Finally, some possible methods for 

evaluating the resulting value distributions were outlined.  These ideas lead directly into 

Chapter 4 where two simulation examples are presented and their results used to 

strengthen the proposed methodology in this thesis.
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4.  Analysis 

 

 Chapter 3 introduced a methodology to simulate the effects of weight ambiguity 

in a Value-Focused Thinking decision problem.  It also  provided the ground work for 

modeling VFT problems with weight ambiguity.  Chapter 2 established the validity of the 

Monte Carlo approach and this chapter provides concrete examples of the methodology.  

 Section 4.1 provides the simulation results of the Airport Siting Problem used by 

Lavelle et al.  Statistical hypothesis testing is then conducted on the mean and variance of 

the empirical distributions to compare them to the first and second moments, 

respectively, of the analytical results.  Section 4.2 focuses on the results of using weight 

ambiguity on a more complex decision problem.  Beauregard’s model for Information 

Assurance is analyzed using notional distributions in place of constant weights.  The 

resulting value distributions for each alternative are presented followed by a discussion of 

several ways to compare the alternatives to provide insight.  The chapter concludes with a 

brief summary of the results. 

 

4.1  Airport Citing 

 
 The importance of simulating the Airport Siting example from Lavelle et al. is to 

provide a link between the analytical results and the simulated results.  As is shown in 

this section, the simulation results approximate the analytical results very closely.  This 
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result is used later as a first look at the accuracy of the simulation methodology when 

used on more complex decision problem structures. 

 When possible, it is generally considered better practice to solve a problem 

analytically rather than through the use of simulation.  Lavelle et al. used a greatly 

simplified decision structure to develop an analytical solution to the problem of 

parametric uncertainty.  As the structure of the problem becomes more complex, these 

analytical methods become cumbersome and may even be intractable (Hammersly and 

Handscomb, 1964).  In these cases, simulation becomes increasingly important.  

Simulation can often be employed to provide greater speed and flexibility to the decision 

analyst.  By simulating the simplified structure used by Lavelle et al., this section 

provides a benchmark between the simulated and analytical results, highlighting the 

approach while illustrating it with an equivalent outcome. 

 
 
4.1.1  Building Model 
 
 
 To demonstrate the ability of Monte Carlo Simulation to duplicate the analytical 

results from Lavelle et al., the simulation model was constructed as near identical as 

possible to the problem structure used in the original study.  The following information 

was provided as the weight distribution information: 
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Table 1: Attribute weight data, from Lavelle et al., 1997: 779 

Attribute Minimum Mode Maximum Distribution 
1.  Cost 40.00 -- 60.00 Uniform 
2.  Capacity 30.00 90.00 95.00 Triangular 
3.  Access Time 30.00 85.00 88.00 Beta 
4.  Safety 15.00 -- 80.00 Uniform 
5.  Displacement 28.00 85.00 92.00 Beta 
6.  Noise 20.00 -- 100.0 Uniform 

 

 The following three tables give the uncertainty data for the ratings of the 

alternatives.  For each alternative, the uncertainty distribution information for each of the 

three attributes is given. 

 

Table 2: Rating data for Alternative A, from Lavelle et al., 1997: 780 

Alternative A 
Attribute Minimum Mode Maximum Distribution 
1.  Cost 50.00 65.00 84.00 Triangular 
2.  Capacity 50.00 68.00 95.00 Beta 
3.  Access Time 50.00 -- 78.00 Uniform 
4.  Safety 61.00 75.00 85.00 Beta 
5.  Displacement 60.00 75.00 79.00 Triangular 
6.  Noise 30.00 68.00 89.00 Beta 

 

Table 3: Rating data for Alternative B, from Lavelle et al., 1997: 780 

Alternative B 
Attribute Minimum Mode Maximum Distribution 
1.  Cost 62.00 65.00 68.00 Triangular 
2.  Capacity 63.00 66.00 80.00 Beta 
3.  Access Time 55.00 -- 70.00 Uniform 
4.  Safety 65.00 75.00 80.00 Beta 
5.  Displacement 65.00 70.00 77.00 Triangular 
6.  Noise 55.00 65.00 70.00 Beta 
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Table 4: Rating data for Alternative C, from Lavelle et al., 1997: 780 

Alternative C 
Attribute Minimum Mode Maximum Distribution 
1.  Cost 33.00 88.00 95.00 Triangular 
2.  Capacity 25.00 88.00 92.00 Beta 
3.  Access Time 7.00 -- 100.0 Uniform 
4.  Safety 14.00 88.00 89.00 Beta 
5.  Displacement 30.00 85.00 91.00 Triangular 
6.  Noise 35.00 84.00 99.00 Beta 

 

 The information contained in Tables 1-4 was used to construct a Monte Carlo 

Simulation model.  Table 1 provided the weight distributions.  Tables 2-4 provided the 

single dimensional values for each of the six attributes.  Because Lavelle et al. used 

independent scale weighting, each random draw from the distributions provided in Table 

1 was normalized to 1.  For each attribute the normalized weight was multiplied by the 

single dimensional value and the six resulting products were summed to give a final 

value.  This was done with each of the three alternatives. 

 
 
4.1.2  Determining n 

 
 Following the construction of the simulation model, Equation 3 was used to 

determine the number of replication required.  To determine the number of replications 

using Equation 3, α and β were both chosen as 0.05 with a resulting 5% chance of 

making either a Type I or Type II error for any given δ.  0.05 was chosen arbitrarily as a 

commonly accepted standard.  The Lavelle et al. study scaled all weights and single 

dimensional values up two orders of magnitude and the resulting calculations reflect this.  

In Equation 3, δ represents the smallest difference in means that can be detected with the 
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given power.  The smallest difference in means of the alternatives given by the analytical 

solution in Lavelle et al. is 1.12.  Since this is the known difference from the analytical 

solution, choosing δ = 1 would indicate that if the distributions of the alternatives are 

compared using the simulation results, the same level of difference among them would be 

detectable.  The given analytical results also provided a maximum variance in the 

alternative scores of 51.41.  As was discussed in Chapter 3, this variance can be used as 

an estimate for the population variance used to calculate n.   

( ) ( )2

2 2 2

2

1.96 1.645 51.41
668.1 669

1

Z Z
n

α β σ

δ

+ +
= = =  

 

4.1.3  Simulation Results 

 
 The following table and figures provide the results from the simulation both 

numerically and graphically.  Table 5 gives the mean and variance from both the 

analytical and empirical distributions for each alternative. 

Table 5: Simulating Lavelle 

 PWE Simulation 
Alternative Mean Variance Mean Variance 
A 68.32 9.25 68.34 10.46 
B 67.21 1.34 67.22 1.76 
C 69.88 51.41 69.27 58.17 
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Figure 11: Alternative A 

 

Figure 11 provides the final distribution of the value of Alternative A.  In Figure 11, the 

vertical bars come from the numerical results of the simulation and are labeled as 

“Alternative A” in the legend.  The solid line in the figure is the best fit normal 

distribution for the given data.  The legend provides the mean and standard deviation of 

this best fit curve.  This figure, as well as Figures 12 and 13, seems to indicate by 

inspection that the simulated and theoretical results are quite close.  Exactly how close 

will be explored in the following section. 
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Figure 12: Alternative B 

 

Figure 12 provides the final distribution of the value of Alternative B.  The bars and solid 

line are interpreted in the same way as they were in Figure 11, the numerical results and 

the best fit curve. 
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Figure 13: Alternative C 
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Figure 13 provides the final distribution of the value of Alternative C.  As with Figures 

11 and 12, this final chart gives the numeric results as bars and the best fit curve as a 

solid line. 

 
 
4.1.4  Comparing Results 

 
 The key to this portion of the research is to demonstrate that the simulated results 

closely approximate the analytical results, thereby allowing for a method that does not 

require cumbersome integration.  The validation of simulation as an approach to weight 

ambiguity in the simplified problem structure of PWE also provides a foundation to begin 

to simulate more complex problems. 

 To demonstrate that the simulation results closely approximate the analytical 

results, two sets of hypothesis tests were conducted.  The first set is designed to compare 

the means of the analytical and empirical distributions and the second is designed to test 

the variance.  Equation 6 provides these tests: 

 

 
2 2

0 0 0 0
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:                                :
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µ µ σ σ

= =

≠ ≠
 (6) 

 
where µ0 and σ2

0 represent the analytical mean and variance respectively and µ and σ2 

represent the mean and variance calculated from the empirical distributions. 

 In the case of the means, the test statistic used is (Hines and Montgomery, 1990: 

301): 
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 0
0

XZ
n
µ

σ
−

=  (7) 

 
where µ0 and X  are the analytical mean and empirical mean respectively, σ is the 

standard deviation from the analytical solution and n is the number of replications already 

determined.  In this case, if Z0 falls between -Zα/2 and Zα/2 then we are unable to reject the 

null hypothesis that the analytical and empirical means are equal.  The same confidence  

level, α = 0.01, is being used as it has been previously. 

 Comparison of the variance will use the test statistic (Hines and Montgomery, 

1990: 317): 

 0
0

0 2
SZ

n
σ

σ
−

=  (8) 

 
where σ0 and S are the analytical standard deviation and the empirical standard deviation 

respectively and n is the number of replications already determined.  In this case, if Z0 

falls between -Zα/2 and Zα/2 then we are unable to reject the null hypothesis that the 

analytical and empirical standard deviations, and consequently the variances, are equal.  

The same confidence  level, α = 0.01, is being used as it has been previously.  This test 

statistic was chosen as a large-sample test that is robust to errors in the normality 

assumption (Hines and Montgomery, 1990: 317-318). 

 The first test for the mean.  For Alternative A: 

0 68.34 68.32 0.02 0.17
3.04 25.87 0.118A

XZ
n
µ

σ
− −

= = = =  

 



   

69 

For Alternative B: 

0 67.22 67.21 0.01 0.22
1.16 25.87 0.045B

XZ
n
µ

σ
− −

= = = =  

 

For Alternative C: 

0 69.27 69.88 0.61 2.20
7.17 25.87 0.277C

XZ
n
µ

σ
− − −

= = = = −  

 For all three alternatives, the critical values and rejection regions are the same.  

With α = 0.01, the critical values given by -Zα/2 and Zα/2 are –2.58 and 2.58 respectively.  

For Alternatives A, B and C, it is clear that the test statistic is within this range and 

therefore the null hypothesis cannot be rejected.  This indicates that the simulated results 

are statistically equivalent to the analytical results.   

 After the means are compared, the variances are tested.  Again, the hypothesis test 

and test statistic were both given previously in this section.  The results are, for 

Alternative A: 

0

0
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SZ
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σ
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For Alternative B: 

0

0

1.33 1.16 0.17 5.31
1.16 36.58 0.0322B

SZ
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0
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σ
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 The critical values and rejection regions are the same for all three alternatives.  

With α = 0.01, the critical values given by -Zα/2 and Zα/2 are –2.58 and 2.58 respectively.  

Comparing these critical values to the computed test statistics results in being unable to 

reject the null hypothesis that the simulated and theoretical variances are equal for 

Alternatives A and C.  For Alternative B, the null hypothesis, that the simulated and 

theoretical variances are equal, would be rejected.  This indicates that for Alternative B, 

there is a significant difference in the simulated variance and the theoretical variance. 

 The purpose of this example was to demonstrate that the results from the 

simulation would approximate the results from the analytical solution.  Five out of the six 

tests performed failed to reject the null hypothesis.  That is, for five tests there was not 

enough evidence to conclude that the simulated and analytical moments being compared 

were different. 

 

4.2  Information Assurance 

 
 Simulating Information Assurance provides a look at the results of the proposed 

method on a more complex, swing weighted value hierarchy.  None of the assumptions 

necessary to solve a decision problem with weight ambiguity analytically apply to this 

problem.  The only thing that has been changed in this problem from the original is in 

substituting the constant weights with distributions. 
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4.2.1  Building the Model 

 
 The previous section has shown that simulating the input parameters to a 

weighted additive model provides results equivalent to the analytical solution.  While this 

may not be necessary when simple problem structures such as PWE are used, the 

situation changes considerably when complex decision structures are modeled.  In these 

cases, the analytical solution can quickly become time consuming and difficult, if not 

intractable. 

 A hierarchically structured VFT problem using swing weighting is just such a 

case.  Not only do these structures potentially contain the distributions used by Lavelle et 

al., they may also be specified empirically or through some mixed distribution.  The 

hierarchical nature of the VFT methodology would now cause the final weights to be not 

simply normalized, but also a product of several local weights. 

 The decision hierarchy used in Figure 2 forms the basis of a more complex 

decision structure which now incorporates weight ambiguity.  One possible source of 

ambiguity in this decision problem is designing a hierarchy that can be used not only in 

the organization it was built for, but to model Information Assurance problems for other 

organizations.  In such a case, the preference tradeoffs of several decision makers need to 

be taken into account.  Figure 14 contains the information from Figure 2, but also 

includes the corresponding distribution for each of the swing weight coefficients.  In each 

case, the original provided swing weight coefficient will represent the most likely value 

for each distribution.  This may be different from the expected value of the distribution.   
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Figure 14: IA Hierarchy with Swing Weight Coefficient Distributions 

 With no clear guidance from the original study on how to structure the weight 

distributions, it was decided to simply provide all weights with a triangular distribution 

with the original swing weight coefficient as the mode, half this value for the min and 

one and a half times this value for the max.  This created all symmetrical distributions.  
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There is one case that should be noted.  Under Information and IS Protection, two 

attributes were deemed to have equal weight and also be the least important.  One of 

them was arbitrarily chosen to remain equal to x, thereby representing the least important 

attribute.  The other was distributed ~ triang(0.5,1,1.5).   

 As described in Chapter 2, swing weights are developed by identifying the least 

important attribute and using it as the baseline, x.  Each successive attribute in the given 

tier and branch is then compared to this attribute and its swing weight coefficient is equal 

to its relative importance above the baseline.  Since all swing weight coefficients and 

corresponding local weights are identified against the value of the baseline, this value 

must not change.  As shown in Figure 14, the coefficient of the swing weight distribution 

for the least important attribute is fixed at 1.  However, since the weights are normalized 

after each random draw, the actual distribution of the corresponding numerical weight 

will not be a constant.     

 

4.2.2  Determining n 

 
 As was done for the Lavelle et al. study, n must be determined for this simulation.  

The number of replications was again calculated from the desired Type I error, Type II 

error and detectable difference.  Equation 3 was again used.  In this case, the hypothesis 

test was conducted on the distributions of the final values of the alternatives.  Without 

any prior knowledge of the final alternative distributions, the population variances are not 

known.  However, there is information available that can help provide an estimate.  As 
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was described in Chapter 3, the population variance can be estimated by using the 

variance of the single dimensional values for the final end measures for each attribute.   

 For the sample size calculations for this example, α = β = 0.05.  This provides a 

typical 95% confidence, and a power of 0.95 for any given δ.  The choice of δ is based on 

a desire to be able to detect a certain difference.  In this case, it is desirable to detect a 

minimum difference of 0.01.  The largest variance in the component utilities of the 

alternatives is used as an approximation of the variance.  In the Information Assurance 

example, the largest variance is 0.0039.  This is the variance used to calculate n.   

( ) ( )2

2 2 2

2 2 2

1.96 1.645 0.0039 0.05 500
0.01 0.01

Z Z
n

α β σ

δ

+ +
= = = =  

 

4.2.3  Simulation Results 

 
 Table 6 provides a summary of parameters associated with the empirical 

distributions for the final value of the alternatives.  For reference it also includes the 

original value of each alternative. 

 

Table 6: Information Assurance Simulation Results 

 Alternatives 
Statistic Baseline ISS ESM Cisco 

Original Value 0.6180 0.7530 0.6830 0.9100 
Mean 0.6190 0.7532 0.6824 0.9095 
Variance 0.0001 0.0001 0.0002 0.0001 
Range Min 0.5876 0.7228 0.6463 0.8736 
Range Max 0.6519 0.7758 0.7244 0.9302 
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 The results in Table 6 clearly show that the distribution mean is very close to the 

point estimate mean and that the variances are quite low.  While this table provides much 

useful information, it does not give an intuitive look at the distributions of the 

alternatives.  Figures 15-18 provide this intuitive look. 
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Figure 15: IA – Baseline 

 

Figure 15 gives the distribution of the final value of the Baseline system.  The chart 

includes vertical bars representing the exact numerical results from the simulation.  The 

solid line is the best fit normal approximation to the data.  The legend provides the mean 

and standard deviation for this best fit line. 
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Figure 16: IA – ISS 

 
Figure 16 provides the numerical results from simulating the value of the ISS alternative.  

Again, a best fit normal approximation is provided along with the mean and standard 

deviation. 
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Figure 17: IA – ESM 

 
Figure 17 give the final distribution of value for the ESM Information Assurance 

alternative.  This chart includes the numerical results of the simulation as a series of 
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vertical bars with a best fit approximation of the normal as a solid line.  The mean and 

standard deviation of the normal is given in the legend. 
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Figure 18: IA – Cisco 

 
Figure 18 gives the same information as the previous three figures for the Cisco 

alternative.  Again, the mean and standard deviation of the normal approximation is given 

in the legend. 

 Figures 15-18 show the empirical distribution and fitted normal distribution for 

each of the alternative.  Figure 19, however, truly provides an idea of how the alternatives 

compare. 



   

78 

Frequency Comparison

.000

.049

.098

.146

.195

0.5500 0.6500 0.7500 0.8500 0.9500

Baseline

ESM

ISS

Cisco

Overlay Chart

 
Figure 19: Information Assurance Alternatives 

 
 It is clear from Figure 19 that the inclusion of ambiguity in this model, assuming 

that the ambiguity was properly specified, does not change how this decision would have 

been made.  This figure also indicates that Cisco is by and far the best alternative.  For 

this decision problem, part of the insight provided to the decision maker is that within the 

specified probable weights, there is not set of weights in which any alternative out 

performs Cisco.  This information is useful in determining that the Cisco alternative is 

clearly a better alternative 

 

4.2.4  Dominance 
 
 
 Once the simulation has been built and run, the results can begin to be analyzed.  

The obvious first method is to simply look at the distributions of the alternatives when 

plotted together, as shown in Figure 19.  This may clearly rule out some alternatives or 
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separate the alternatives into distinct groups.  After that, however, the comparison 

becomes more difficult. 

 The first level of analysis is to check for dominance among the alternatives as was 

discussed in Chapter 3.  One alternative (A) deterministically dominates another 

alternative (B) if the lowest possible value of A is higher than the highest possible value 

of B.  Finding dominance among the alternatives allows the decision maker to draw 

strong conclusions about which alternative is better. 

 For the Information Assurance example, dominance can easily be determined 

from Table 6 by looking at the min and max range values.  By comparing these values, 

Cisco clearly dominates all other alternatives.  In addition, ISS dominates the Baseline 

system.  There is no deterministic dominance between ESM and both the Baseline and 

ISS.  Stochastic dominance, however, exists between any two alternatives available.  In 

these cases, it is clear that Cisco displays deterministic dominance over all others.  ISS 

dominates both the Baseline and ESM and finally, ESM dominates the Baseline.  These 

results come as no surprise given the original result.  Figure 20 illustrates the presence of 

stochastic dominance among the four alternatives. 
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Figure 20: Cumulative distribution chart showing stochastic dominance 

 
Figure 20 clearly shows the stochastic dominance present among the four alternatives.  

This clearly indicates that the Cisco alternative would be preferred. 

 Chapter 4 presented two examples used to demonstrate the proposed 

methodology.  The first example, Airport Citing, demonstrated the connection between 

analytical and simulated results.  It provided a strong indication that the proposed 

methods of simulation accurately model the reality of using probability distributions to 

represent weight ambiguity in a decision problem.  The second example, Information 

Assurance, illustrated the usefulness of simulation when incorporating weight ambiguity 

into larger, more complex decision structures.  It also provided a venue for briefly 

discussing possible comparison methods for resulting distributions of value for the 

alternatives.  Together, the examples demonstrate the validity and applicability of 

simulation. 
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5.  Conclusions and Discussion 
 

 With the inclusion of weight ambiguity into the VFT methodology, the decision 

analyst is able to bring a more flexible and robust process to the decision maker.  “[I]t 

creates a paradigm for a priori sensitivity analysis, thereby giving the decision maker 

more information upon which to base decisions…” (Lavelle et al., 1997: 774).  Although 

the presence of weight ambiguity has been a long established fact, most decision analysis 

methodologies simply assumed it away.  The methodology presented here, and 

demonstrated by the examples, makes that assumption no longer necessary. 

 

5.1  A New Approach 

 
 The technique presented here is an adaptation and generalization of Keeney’s 

VFT process.  It has been expanded to identify and include potential ambiguity in the 

weights.  While the idea that a decision maker’s weights may not be absolute is not new 

and despite the increasing prevalence of groups in the decision making process, there has 

been very little research into expanding current methods to account for preference 

ambiguity. 

 A new approach utilizing Monte Carlo simulation is clearly suggested.  The 

methodology proposed here begins to fill that void.  Comparison with the analytical 

results from Lavelle et al. indicate a very close congruity between the theoretical and 

simulated results.  Given the current state of computing power, a simulation approach 

offers a greater degree of flexibility to the decision analyst.  Once the simulation model 

has been built, modifying the model for “what if” analysis and sensitivity analysis takes 
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little time.  Furthermore, this procedure is both robust enough to handle decision 

problems of varying complexity and does so in a manner easy to duplicate so it may be 

put into practical application, provided the required distributions can be elicited. 

 

5.2  Results 

 
 The hypothesis tests resulting from Airport Siting example suggest the 

applicability of Monte Carlo simulation.  Five of the six tests showed no statistical 

difference between the analytical solution and the simulated results.  The statistical 

results and the accompanying figures clearly, although not perfectly, demonstrate that 

simulation can closely approximate an analytical solution. 

 The Information Assurance decision problem was represented by a complex and 

multi-tiered structure.  This was also successfully simulated.  While the results did not 

lend themselves to a more descriptive assessment of the different alternative selection 

options, they showed that distributions can be developed.  Even this lack of alternative 

overlap is insightful.  The lack of substantial overlap illustrated both deterministic and 

stochastic dominance.  Identifying the presence of dominance in a decision problem is 

also insightful.  This may help identify the clearly preferred alternative even if the 

decision maker’s preference structure varies widely. 

 The direct weighting discussion and examples shed particular light on the 

potential shortcomings of direct weighting when applied to weight ambiguity.  The 

fundamental problem arises from using independent random variable to model a 

dependent reality.  The issues themselves demonstrate that the idea of using ambiguity in 
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weights must be closely scrutinized to assure that the information obtained from the 

decision maker is not inconsistent. 

 

5.3  Future Work 

 
 One of the largest areas for future research is in the area of sensitivity analysis.  

Since this method directly incorporates changes in weights, is there any need for 

traditional sensitivity analysis?  Are there possibly other types of sensitivity analysis that 

may be useful?  Sensitivity analysis for constant weights centers around varying those 

weights to determine how robust the decision is to changes.  With distributions, it may 

now be necessary to look at sensitivity analysis in terms of varying the distribution of the 

weights.  The impact on the decision when certain weights are given more or less 

variance may be used.  In addition, traditional sensitivity analysis using constant weights 

may still be effective if the weight distributions have been incorrectly elicited.  There 

may be ways to incorporate a more deliberate and insightful sensitivity analysis.  

Additional methods of comparing and assessing the final alternative distributions may 

open up avenues to more insight into the decisions.  Research into the best methods for 

eliciting weight distributions should be developed.  Finally, the model needs to be applied 

in a number of settings to discover its strengths and try to bring to light any flaws.  More 

work can also be done in the testing of more input distributions to the model.  The most 

significant advances to this research would be in the fields of probability elicitation from 

decision makers and the comparison of alternatives. 
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